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Abstract—One of the major challenges in distributed deep
learning is attenuating straggler problem. The straggler increases
synchronization latency and significantly inhibits the convergence
of deep learning model. We empirically observe that the imbal-
anced data samples worsen the straggler problem and make the
convergence of the deep learning model slower. However, existing
approaches such as BOA and EP4DDL have not addressed
data imbalance issues while solving the straggler problem. To
overcome the straggler and data imbalance problems, we propose
CHRONICA, a new data-imbalance-aware scheduler. Based on the
size of the data samples and the configuration of each worker,
CHRONICA elaborately predicts the training time required for
each worker. CHRONICA then provides equivalent training time
to each of the workers, alleviating both step- and epoch-level
straggler problems. Furthermore, CHRONICA suggests a new
parameter synchronization scheme to achieve fast convergence
based on the weighted average of the training workload on
each worker. Our extensive evaluation using four deep learning
models on 32 Amazon EC2 GPU instances showed that the new
CHRONICA achieves up to 3.19 times speedup over the state-of-
the-art systems.

Index Terms—Distributed deep learning, Straggler, Scheduler,
Data imbalance

I. INTRODUCTION

Over the past few years, the scale of data and the size of

deep learning models have increased exponentially. It is obvi-

ous that as the size of the dataset increases, the training time of

the deep learning model also increases. For example, training

GPT-3 [1] with 175 billion parameters and 499 billion tokens

requires approximately 288 years using a single NVIDIA Tesla

V100 GPU [2]. Hence, it is infeasible to train a large-scale

deep learning model with very large datasets on a single

machine, and therefore distributed deep learning is becoming

increasingly critical. The primary strategy for parallelizing

deep learning is data parallelism that distributes a batch of

datasets across multiple workers [3]. When a deep learning

model is trained in a synchronous data-parallel fashion, the

weight parameters must be synchronized across workers at

every step via parameter servers. However, the synchronous

data-parallel training scheme has an inevitable limitation that

it may increase synchronization latency while waiting for a

straggler, i.e., the slowest worker, which is caused by the

node heterogeneity of cluster, resource contention and system

failure, etc.

In order to address the straggler problem, several ap-

proaches such as utilization of extra backup workers [4], dy-

namic relaxation of synchronization barrier [5], [6] and node-
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Table I: Data imbalance factor (DIF) of widely used video

datasets. DIF is defined as the standard deviation of the size

of data samples:
√

1
|L|−1

∑
λ∈L |λ− μ(L)|2 where L and λ

denote the size of data samples and size of each data sample,

respectively.

Dataset #Videos DIF
UCF101 [9] 13,320 3.73
Charades [10] 9,848 9.44
DAVIS [11] 50 18.36
HACS [12] 504,716 64.13
COIN [13] 11,827 70.02
YouTube-BoundingBoxes [14] 285,412 212.64
Sports-1M [15] 1,133,158 539.75

heterogeneity-aware load balance techniques [7], [8] have been

proposed. Most of these studies assume that each data sample

has the same size, and the straggler stems from the difference

in the performance of the node and the heterogeneity of the

network.

However, there are innumerable data in which the size

of data samples are different from each other. For example,

there may be three videos with each duration of 10 seconds,

10 minutes, or one hour. After these videos are converted

into tensors, each data sample has a different shape and size

depending on the duration of the video. Unfortunately, it is

not desirable to simply fix the size of data samples equal. In

the above example, if the videos are cropped to the shortest

one, i.e., 10 seconds, 99% of data are lost. On the other hand,

if the videos are zero-padded to the longest one, i.e., one hour,

61% of the data are dummy and the training time increases

to the maximum. Therefore, the size of data samples may not

be arbitrarily modified, and previous approaches are hard to

mitigate the straggler problem when the data is imbalanced.

Surprisingly, we found in our measurements that the degree of

data imbalance in real-world datasets reaches up to 500 and

tends to increase in large datasets, as shown in Table I.

Without considering the difference between the size of data

samples, imbalanced data imposes three main problems. First

of all, the straggler problem is intensified. That is, each worker

may process a different amount of operations because the sizes

of data samples are different. This causes the worker training

with the largest data samples to become a straggler. Second,

the difference in the size of the data samples increases the peak

device memory usage and thus decreases the maximum batch

size, which limits the throughput. Finally, the convergence

is degraded. In general, the optimizer reduces the gradients

computed in each worker by averaging them. Since the amount

of data trained in each worker is different, the reduced gradient
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is different from that of a single worker, and the deep learning

model converges slower. Due to the aforementioned problems,

the training time of deep learning model significantly increases

as the degree of data imbalance grows.
In this paper, we propose CHRONICA, a data-imbalance-

aware scheduler that significantly minimizes the side effects

of imbalanced data. The main idea of CHRONICA is to

consider the relative size of each data sample. CHRONICA

elaborately predicts the training time required for each data

sample according to its size. Using the estimated training time,

CHRONICA equalizes the training time of each worker for all

steps and epochs. Therefore, CHRONICA effectively mitigates

both step- and epoch-level straggler problems. Furthermore,

CHRONICA reduces the total number of steps for a deep

learning model to converge by adjusting the learning rate for

each worker based on the weighted average of the amount of

data distributed to each worker.
We developed CHRONICA on top of TensorFlow [16] and

evaluated it using four popular deep learning models over 32

Amazon EC2 GPU instances by varying the degree of data im-

balance. Our evaluation showed that CHRONICA outperforms

the state-of-the-art data-parallel implementations with up to

3.19 times faster runtime while ensuring the convergence of

deep learning model. To summarize, the key contributions of

our work are as follows:
Data-imbalance-aware data scheduling. CHRONICA miti-

gates the step-level straggler problem by equalizing the train-

ing time of all workers for each step.
Data-imbalance-aware data shuffling. CHRONICA mitigates

the epoch-level straggler problem by making the training time

for all workers equal for each training epoch.
Learning rate compensation. CHRONICA accelerates conver-

gence by adjusting the learning rate of each worker based on

the amount of data trained by each worker.
Heterogeneity independence. CHRONICA adaptively sched-

ules data using the feedback of each worker and thus acceler-

ates training regardless of the node and network heterogeneity

of cluster.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of data parallelism

for training a deep learning model and present related previous

studies that address the straggler problem.

A. Background
Deep Learning Model. The deep learning model is a parame-

terized model based on a deep neural network that takes input

data x with a fixed number of parameters w to compute the

final output. In the supervised learning fashion, the predicted

output from the model f(x;w) and its ground truth y are

used for computing the loss value using the loss function

L. The goal of deep learning is to find the optimal weight

parameters w that minimize the loss value across the training

data x = {x1, ..., xN} (Eq. 1).

argmin
w

L(f(x;w), y) = 1

N

N∑
i=1

L(f(xi;w), yi) (1)

The weight parameters can be iteratively optimized by mini-

batch stochastic gradient descent (SGD) [17]. For example,

wt+1 used to compute forward propagation in the t + 1-th

mini-batch is obtained by updating wt using the gradients gt
from the t-th mini-batch (Eq. 2).

gt ← 1

m

m∑
i=1

∇wt
L(f(xi;wt), yi)

wt+1 ← wt − ηgt

(2)

where m is the size of each mini-batch.

Distributed Deep Learning. Both mini-batch SGD and syn-

chronous SGD [18] can be applied to distributed training using

multiple M workers. For each step based on a mini-batch of

data samples, M workers simultaneously compute their local

gradients gt,j and send the local gradients to the parameter

server. After all M gradients are delivered to the parameter

server, the weight parameters are updated based on the average

of the M gradients (Eq. 3).

wt+1 ← wt − η
1

M

M∑
j=1

gt,j (3)

Imbalanced Data. The imbalanced data is a dataset consisting

of multiple data samples that are hard to divide and different-

sized from each other (e.g., the duration of each video can be

varied). After converting data samples into tensors for training,

each tensor can maintain a different size of data structure.

This indicates that the number of operations required for each

tensor can be different from each other. Therefore, considering

only the number of data samples while distributing the data

samples to multiple workers can cause a huge data imbalance

problem. As the training workload of each worker can be

different from each other, the straggler problem may lead to

higher synchronization latency and slower training time of

deep learning models.

B. Related Work

As the straggler problem significantly increases the execu-

tion time of distributed deep learning, several algorithms have

recently been proposed to solve the straggler problem.

Extra Backup Workers. Chen et al. [4] first adopted extra

backup workers to reduce the impact of a straggler. In addition,

Xiong et al. [19] introduced another backup worker strategy

for dynamically adopting backup workers to further alleviate

the straggler problem.

Stale Synchronous Parallel Model. There were other strate-

gies proposed to relax the strict synchronization rule of dis-

tributed deep learning. For example, it is possible to balance

the synchronous and asynchronous strategies of distributed

deep learning. FlexRR proposed by Harlap et al. [5] and

the RNA proposed by Yang et al. [6] adopted the stale

synchronous parallel approach by dynamically relaxing the

synchronization barrier. On the other hand, Ferdinand et

al. [20] fixed the duration of the training epoch to restrict

the synchronization latency due to the straggler.
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(a) Job Completion Time (b) Peak Device Memory Usage

Figure 1: Normalized JCT and device memory usage with varying the degree of data imbalance (DIF).

Heterogeneity-aware Load Balance Techniques. As the

node and network heterogeneity of clusters are known to have

a significant impact on the straggler problem, BOA [7] and

EP4DDL [8] proposed a load balance technique to dynami-

cally adjust the training workload for each worker in a hetero-

geneous cluster. BOA is a distributed deep learning framework

designed for straggler mitigation on a heterogeneous GPU

cluster. Based on its performance model that describes the

correlation between local batch size and training time, BOA

mitigates the straggler problem by adjusting the number of

data samples to be assigned to each worker. On the other hand,

EP4DDL adopts a machine learning approach to predict the

performance of each worker using GRU networks [21]. Based

on the predicted performance, it adjusts the parallelism of each

worker to minimize the performance variance between work-

ers and mitigate the straggler problem. Finally, DARL [22]

introduced an actor model to fully utilize the resources of

dynamic clusters using a deep reinforcement learning-based

load balance technique combined with the stale synchronous

parallel approach.

Limitations of Prior Work. Most of the existing systems

were designed with the assumption that the data is completely

balanced. They tried to solve the straggler problem caused

by the difference in the performance of node and network.

Therefore, their approaches are not appropriate to alleviate the

straggler problem given the imbalanced data. Unlike the strag-

gler problem caused by the node and network heterogeneity,

which can be significantly mitigated by changing hardware,

the straggler problem introduced by imbalanced data can only

be resolved by changing the data scheduling policy. This

motivates us to design a new data-imbalance-aware scheduler

to solve the data imbalance problem.

III. MOTIVATION

In this section, we introduce the problems of imbalanced

data. When a deep learning model is trained in a data-parallel

fashion with imbalanced data, the following three problems

can significantly increase the runtime of deep learning model.

Problem 1: Intensified Straggler. When the size of data

samples are different from each other, each worker performs a

different number of operations in CUDA kernels. In this case,

the difference in training time between workers increases and

the straggler problem increases. To analyze the impact of data

imbalance on the straggler problem, we trained VGG16 [23],

ResNet-50 [24], MobileNetV1 [25] and EfficientNet-B0 [26]

by exponentially increasing the DIF of the UCF101 dataset

from 0 to 64. In order to evaluate the impact of node hetero-

geneity on the straggler problem, we conducted experiments

on both homogeneous and heterogeneous clusters. The detailed

experimental settings are specified in Section VI-A.

Figure 1a shows the increase in job completion time (JCT)

according to the degree of data imbalance compared to a

baseline that only contains a fixed size of data samples.

These results demonstrate that the JCT increases linearly

according to the degree of data imbalance, regardless of the

node heterogeneity in all workloads. Since both clusters show

the same pattern for the increase in JCT, it can be seen

that the degree of data imbalance determines the impact of

the straggler problem, regardless of the heterogeneity of the

node. Furthermore, as shown in Table I, as the degrees of

data imbalance in real-world datasets are much higher, the

synchronization latency affected by imbalanced data would be

much longer.

In addition to the step-level straggler, an epoch-level strag-

gler can also be possible. The size of a large-scale dataset

often exceeds the storage capacity of a single machine. For

example, the maximum storage capacity of an Amazon EC2

GPU instance (e.g., p4d.24xlarge) is limited to 8TB while the

raw size of YouTube-8M [27] is about 360TB. In this case, a

worker has to hold only a subset of the dataset required for

each training epoch. Even if the step-level straggler problem is

resolved, there still exists an epoch-level straggler to process

the remaining data samples at the end of each training epoch.

Therefore, the epoch-level straggler should also be considered

to completely solve the straggler problem.

Problem 2: Limitations on Batch Size. The device memory

of GPU is basically not virtualized. Thus, when the data is

imbalanced, the amount of device memory usage varies for

each step (mini-batch), and the peak device memory usage

generally increases. To inspect the increase in peak device

memory usage according to the degree of data imbalance, we

profiled the device memory usage using a profiler plugin of

TensorBoard [28], which provides a callback to trace CUDA

API using CUPTI [29].

Figure 1b shows the increase in peak device memory

usage according to the degree of data imbalance. The peak

device memory usage also increased according to the degree

of data imbalance in all workloads, regardless of the node

heterogeneity. This leads to limitations on the maximum batch

size allowed, hindering the utilization of CUDA and Tensor
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cores in GPUs. When the batch size becomes smaller, the

number of steps in a training epoch increases. This brings more

frequent occurrences of data transmission across workers and

data copies between host and device memory. Therefore, it is

crucial to make the size of allocated data samples not biased

to achieve higher throughput and prevent GPUs from running

out of memory.

Problem 3: Convergence Degradation. When the data is

imbalanced, each worker may calculate the local gradients

with a different size of data samples. This makes the result

of Eq. 3 different from that of Eq. 2 and the convergence is

degraded. For example, when a deep learning model is trained

in a data-parallel fashion using two videos with 10 frames

and 600 frames, the gradient for each frame in the former

has a weight of 1/10, while the latter has a weight of 1/600.

When these gradients are gathered, the weight of the former

becomes 1/20 (1/10×1/2 = 1/20) and the weight of the latter

becomes 1/1200 (1/600×1/2 = 1/1200). Therefore, the larger

data samples are trained slower and convergence is degraded

when the data is imbalanced. To analyze the degradation of

convergence according to the degree of data imbalance, we

profiled the convergence of ResNet-50.

Figure 2: Convergence degradation against the degree of data

imbalance.

Figure 2 shows the convergence patterns of ResNet-50 over

different degrees of data imbalance. The result demonstrates

that convergence is severely hindered as the degree of data

imbalance increases. Since the convergence rate decreases, the

number of required steps to complete the training increases.

Therefore, it is necessary to correct Eq. 3 when the data is

imbalanced so that the deep learning model can converge

equally as when the data is balanced.

IV. PROBLEM DEFINITION

In this section, we investigate the correlation between the

degree of data imbalance and the straggler problem. Within a

stable network bandwidth environment, the data transmission

cost can be omitted because the size of gradients sent from

each worker and the weight parameters are fixed.

Formulation for Straggler Problem. Suppose Ti,j is a

training time for the j-th worker in the i-th step given a cluster

consisting of M workers. Then the straggler problem in the

i-th step SPi can be represented as the difference between the

training time of the straggler and the fastest one (Eq. 4).

SPi = max(Ti,1, ..., Ti,M )−min(Ti,1, ..., Ti,M ) (4)

As the straggler stems from the difference between the training

time of each worker, it is obvious that the goal of minimizing

the straggler problem is to make equal training time for all

workers.

Formulation for Training Time. Based on the observation in

Section III, Ti,j can be described as a linear equation for DIF

and appropriate constants, ai,j and bi,j (Eq. 5).

Ti,j = ai,jDIF + bi,j (5)

Since DIF is defined as the standard deviation of the size of

data samples L = {λ1, ..., λN} and L is normally distributed,

DIF is a generalized linear model [30] of L. Then DIF is

approximately linear for λi,j , which is the size of data assigned

to j-th worker in i-th step. Thus Eq. 5 can be rewritten as a

linear equation for λi,j (Eq. 6).

Ti,j = a′i,jλi,j + b′i,j (6)

From Eqs. 4 and 6, the straggler problem is determined by

the performance indicators representing the heterogeneity of

the node and the network, and the size of the data assigned

to each worker (i.e., ai,j , bi,j and λi,j). In other words, given

Ti,j and λi,j , it is possible to find ai,j and bi,j .

V. DESIGN AND IMPLEMENTATION

In order to effectively solve the data imbalance problem,

there are four major considerations. First of all, the training

time for each data sample must be accurately predicted. Sec-

ond, it is necessary to equalize the training time for each step

of all workers to deal with the step-level straggler problem.

Third, the training time for each training epoch should be equal

for all workers to prevent the epoch-level straggler problem.

Finally, updated weights with the imbalanced data calculated

by Eq. 3 should be consistent with updated weights using the

balanced data to ensure convergence while training a deep

learning model.

Our CHRONICA includes four key components: runtime
prophet, data scheduler, data shuffler and learning rate com-
pensator. Figure 3 shows the overall workflow of CHRONICA.

(1) The data scheduler solves the step-level straggler problem

by using the estimated training time (ETT) of each data sample

and assigning the mini-batch for the next step to each worker

to make all the workers have the same amount of training time.

As shown in Figure 3, in B−1-th step, the size of mini-batch

assigned by data scheduler to worker 1 (129 + 105 = 234)

and worker 2 (156 + 88 = 244) are similar to each other.

(2) Thereafter, all workers compute their local gradients in

parallel. When the gradients are reduced, the learning rate

is adjusted in the parameter server based on the amount of

data trained by each worker. (3) After finishing a step, each

worker sends feedback to the runtime prophet. (4) Using the

feedback from workers, runtime prophet estimates the training

time of each data sample for all workers. Runtime prophet

then recalculates the ETT for each data sample. This routine

of scheduling-training-feedback-regression is repeated within

each training epoch. After completing a training epoch, data
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Figure 3: Overall workflow of CHRONICA. The number on each data sample denotes the estimated training time (ETT). B
denotes the total number of steps (mini-batches) within an epoch. The size and time included in each feedback indicate the

size of trained data and the actual training time, respectively.

shuffler redistributes the data samples and solves the epoch-

level straggler problem by assigning the data samples that

require the same amount of training time to each worker.

These overall procedures are processed iteratively until the

deep learning model converges.

A. Runtime Prophet

Algorithm 1: Performance profiling for worker j

Input: a set of data samples in worker j itemsj ,

feedbacks Tj , Λj

Output: performance indicators aj , bj
1 aj , bj ← linear regression(Tj ,Λj)
2 // Recalculate ETT.

3 for itemsi,j ∈ itemsj do
4 itemsi,j .ETT ← ajitemsi,j .size+ bj
5 // Sort data samples by ETT.

6 sort(itemsj)
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Figure 4: Detailed mechanism of runtime prophet when two

workers are participating in the training.

Algorithm 1 shows pseudocode for runtime prophet. As

shown in Figure 4, each worker sends feedback, such as the

training time and the size of the trained data samples, to the

runtime prophet after processing each step. Thereafter, runtime

prophet estimates the performance indicators (i.e., a′i,j and

b′i,j) of each worker. That is, the runtime prophet recalculates

a′i,j and b′i,j using linear regression with feedback consisting

of λi,j and Ti,j in Eq. 6. Then all ETT are recalculated by

runtime prophet because Ti,j can be calculated when a′i,j , b′i,j
and λi,j are given. For example, worker 1 sends the feedback

that the duration of training time and the size of mini-batch

processed in worker 1 were 235 seconds and 118, respectively.

Then the performance indicators of worker 1 are updated from

(2, 4) to (3, 3) using linear regression. Subsequently, the ETT

of the first data sample belonging to worker 2 is updated from

150 seconds to 247 seconds because the size of the sample is

49 (3×49+3 = 150) and the performance indicators of worker

2 become 5 and 2, respectively (5× 49 + 2 = 247). After all

ETT are updated, data scheduler assigns the next mini-batch

using the updated ETT.

B. Data Scheduler

Algorithm 2: CHRONICA scheduling algorithm

Input: a set of all data samples items, world size ω,

batch size β
Output: scheduled data samples pivots

1 // Initialize pivots to ω empty sets.

2 pivots← {∅, ...}
3 for step ∈ {1, ..., β} do
4 if step = 1 then
5 // Initially, select a random pivot.

6 rank, index← random(items)
7 else
8 rank, index← FFD(items, pivots)
9 pivot← itemsrank,index

10 pivotsrank ← pivotsrank ∪ {pivot}
11 itemsrank ← itemsrank \ {pivot}

Algorithm 2 shows pseudocode for data scheduler. Before

starting each step, data scheduler assigns the mini-batches to
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Figure 5: Detailed mechanism of data scheduling sequence

when the cluster size is two and the batch size is four.

workers so that all workers have the same amount of ETT.

Initially, a data sample from an arbitrary worker is randomly

chosen to randomize the training sequence and prevent the

overfitting problem. As shown in Figure 5, data scheduler

randomly selects a data sample from worker 2, whose ETT

is 156 seconds. Subsequently, the data samples are adaptively

selected to minimize the difference in ETT between workers.

For example, data scheduler selects the second data sample

whose ETT is 129 seconds from worker 1 because worker 1

has the least amount of ETT and the data sample closed to

156 seconds is 129 seconds. This procedure is conducted by

iterating over the size of mini-batch. Since it is NP-Hard to find

a combination of data samples that equalizes the training times

of all workers, we adopted first-fit-decreasing bin packing [31]

to find a near-optimal solution in polynomial time. Note that if

data scheduler controls only the number of data samples to be

assigned to each worker, the worker with the largest ETT can

be overloaded. For example, assume that the performance of

worker 1 is three times faster than that of worker 2 and data

scheduler only considers the local batch size. In this case,

the first three data samples assigned to worker 1 and only

the first data sample assigned to worker 2 will be used. As

worker 1 requires 417 seconds (171 + 129 + 117 = 417) and

worker 2 requires 156 seconds, the required training time is

417 seconds. However, if the data scheduler considers ETT

between workers while forming a mini-batch, the training time

can be greatly reduced to 244 seconds (156 + 88 = 244).

Therefore, the data scheduler should consider the size of each

data sample as well as the performance of each worker to

balance the training workload. After scheduling is completed,

the data scheduler sends the indices of selected data samples to

each worker’s data loader. Each data loader loads the selected

data samples into memory using the indices before the next

step begins. Since the data scheduler selects the data samples

for each step, only the data samples required for each step are

constantly loaded within each training epoch.

C. Data Shuffler

Algorithm 3: CHRONICA shuffling algorithm

Input: a set of all data samples items, world size ω,

a set of performance indicators A, B
Output: a set of redistributed data samples items

1 // Initialize Σ to ω zeros.

2 Σ← {0, ...}
3 // Calculate sum of ETT.

4 for rank ∈ {1, ..., ω} do
5 Σrank ← sum(itemsrank)
6 μ← mean(Σ)
7 // Move overflowed items.

8 storage← ∅
9 for rank ∈ {1, ..., ω} do

10 if μ < Σrank then
11 while μ < Σrank do
12 index← search(itemsrank,Σrank − μ)
13 ψ ← itemsrank,index.ETT
14 storage← storage ∪ {itemsrank,index}
15 itemsrank \ {itemsrank,index}
16 Σrank ← Σrank − ψ
17 // Redistribute overflowed items.

18 while 0 < |storage| do
19 pivot, rank ← FFD(items, storage)
20 itemsrank ← itemsrank ∪ {pivot}
21 storage← storage \ {pivot}
22 // Recalculate ETT.

23 pivot.ETT ← Arankpivot.size+Brank

Mark as overflowed.

W
or

ke
r 2

W
or

ke
r 1

Worker 1: 678
Worker 2: 806

Calculate sum of ETT.

Worker 2 is overflowed by 128!

Sharded sampleOverflowed sample

Shard data samples.
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Figure 6: Detailed mechanism of the data shuffling sequence

when the data samples are partitioned into two workers.

Algorithm 3 shows pseudocode for data shuffler. After

processing each epoch, the data shuffler redistributes the data

samples to enable all workers to execute the same amount of

training time in the next epoch. As shown in Figure 6, data

shuffler first detects the overflowed data samples. Thereafter

data shuffler shards the overflowed data samples to workers

with the data samples, which have relatively less ETT. Since

the performance indicators of workers are different from each
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other, the ETT of the sharded data samples is recalculated. For

example, data shuffler marks two data samples from worker

2 as overflowed, whose ETT are 45 seconds and 39 seconds,

because the difference in ETT between worker 1 and worker

2 is 128 (806−678 = 128). Then data shuffler shards the two

overflowed data samples from worker 2 to worker 1 and ETT

of sharded data samples are recalculated from 45 and 39 to

39 and 27, respectively. As a result, the minimum amount of

data samples can be transmitted during global shuffling. On

the other hand, the data scheduler randomly selects the first

pivot to satisfy the local shuffling rather than shuffling the

entire data.

D. Learning Rate Compensator

Algorithm 4: CHRONICA gradient reduction algorithm

Input: a set of gradients G, a set of feedbacks Λ,

learning rate η
Output: Decrement of weight parameters Δ

1 // Initialize Δ to a zero tensor.

2 Δ← g1 − g1
3 Σ← sum(Λ)
4 for g, λ ∈ G,Λ do
5 Δ← Δ+ η

Σgλ

wt+1 ← wt − η
1∑M

j=1 Λt,j

M∑
j=1

gt,jΛt,j (7)

Algorithm 4 shows pseudocode for learning rate compensator.

After the gradients computed from every worker are gathered

in the parameter server, the optimizer updates the weight

parameters. Instead of using the same learning rate across all

workers, CHRONICA compensates the learning rate to consider

the size of trained data (Eq. 7). For instance, in the example

of Section III, the weight imbalance problem can be resolved

using learning rate compensation that makes all the weights

1/610 (10/610× 1/10 = 1/610, 600/610× 1/600 = 1/610).

E. Implementation Details

We implemented the prototype of CHRONICA based on

TensorFlow 2.6.2 using approximately 1K LoC in Python

3.6.9. CHRONICA is available to use as an open source at

online1. To reduce the communication overhead, we paral-

lelized the feedback phase and combined it with the scheduling

phase as a round trip. That is, each worker simultaneously

calculates its own performance indicators and the feedback

and scheduling results are exchanged in one communica-

tion. For the linear regression in runtime prophet, we used

linear_model module provided by Scikit-learn [32]. Our

learning rate compensator described in Section V-D is im-

plemented in Reduction class of TensorFlow. Furthermore,

we extended Sequence class of Keras [33] to provide the

users with an interface to the relative size of each data sample.

1https://github.com/9rum/chronica

The Python code shown below demonstrates the interface to

represent the relative size of each data sample in the extended

Sequence class.

1 class Sequence(object):
2 ...
3
4 @abstractmethod
5 def __sizeof__(self, index):
6 # Gets relative size of item
7 # at position `index`.
8 raise NotImplementedError

VI. EVALUATION

This section evaluates the performance of CHRONICA by

comparing the makespan, convergence, and scalability with

various state-of-the-art frameworks such as BOA and EP4DDL

that address the mitigation of straggler problem. We trained

four different deep learning models with six different imbal-

anced datasets over homogeneous and heterogeneous clusters.

A. Experimental Setup

Testbed. We used eight Amazon EC2 GPU instances for

our evaluation. To show that our CHRONICA is node and

network heterogeneity-independent, we evaluated CHRONICA

on both homogeneous and heterogeneous clusters. For the

homogeneous cluster, we used eight g4dn.xlarge instances,

each equipped with a NVIDIA Tesla T4 GPU. For the het-

erogeneous cluster, we used four g4dn.xlarge instances with

four g3s.xlarge instances, each equipped with 1 NVIDIA Tesla

M60 GPU. When evaluating the scalability and overhead of

CHRONICA, we used 32 instances for large-scale training. That

is, 32 g4dn.xlarge instances were used for the homogeneous

cluster and 16 g4dn.xlarge instances with 16 g3s.xlarge in-

stances were used for the heterogeneous cluster. The speci-

fications for the experimental environments are described in

Table II.

Table II: Amazon EC2 instances used to evaluate CHRONICA.

Instance type
g4dn.xlarge g3s.xlarge

CPU Xeon P-8259L Xeon E5-2686
Memory (GiB) 16 30.5
GPU Tesla T4 Tesla M60
Device memory (GiB) 16 8
Network (Gbps) Up to 25 Up to 10

Workloads. We used four deep learning models consisting

of different numbers of weight parameters and operations.

The detailed characteristics of each deep learning model are

specified in Table III. We trained the deep learning models by

increasing the DIF from 0 to 64 with the UCF101 dataset.

The size of data samples are normally distributed and the

average durations of datasets are equal to 45 frames. As deep

learning models are used to solve a classification task, we used

categorical cross-entropy loss [34] and Adam optimizer [35] to

adjust the parameters. For collective communication, we used

NCCL [36] to synchronize the weight parameters.

Systems. We compared CHRONICA with three distributed

deep learning systems such as BOA [7], EP4DDL [8] and
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(a) TensorFlow (b) BOA (c) EP4DDL (d) CHRONICA

Figure 7: Comparison of the degree of data imbalance over steps.

Table III: Models used to evaluate CHRONICA.

Model #Params #FLOPs Top-1 Accuracy
VGG16 138.4M 15.3B 71.3%
ResNet-50 25.6M 3.78B 74.9%
MobileNetV1 4.3M 0.56B 70.4%
EfficientNet-B0 5.3M 0.4B 77.1%

TensorFlow [16]. Among the previous related works, BOA

and EP4DDL were chosen to compare our data-imbalance-

aware scheduling approach with the conventional node and

network heterogeneity-aware scheduling. BOA considers the

runtime minimization problem for each step as a min-max

integer programming problem and solves it with an inte-

ger linear programming solver, which uses the branch and

bound methods [37]. EP4DDL also uses branch and bound

methods to find an optimal combination of parallelism when

minimizing the performance variance between workers. As

CHRONICA is implemented on TensorFlow, the key differ-

ences from TensorFlow are the four system designs presented

in Sections V-A to V-D. To show the effectiveness of our

approach, we also compared CHRONICA with TensorFlow,

which randomly selects data samples.

B. Robustness against Data Imbalance

(a) Homogeneous (b) Heterogeneous

Figure 8: Comparison of JCT over degrees of data imbalance

on homogeneous and heterogeneous clusters.

Makespan. Figure 8 and Table IV show the normalized

JCT and average runtime for each training epoch according

to the degree of data imbalance, respectively. To validate

the robustness of CHRONICA against the data imbalance for

makespan, we evaluated the JCT of CHRONICA according

to the degree of data imbalance using ResNet-50. As the

degree of data imbalance increased, the JCT of CHRONICA

was significantly reduced compared to other systems in both

clusters by up to 59%.
To verify the reason for the performance improvement of

CHRONICA, we analyzed it in two aspects: predictive accuracy

Table IV: Comparison of training time per epoch with different

degrees of data imbalance in a homogeneous cluster (in

seconds).

DIF
System

TensorFlow BOA EP4DDL CHRONICA

0 234 232 235 231
4 263 242 260 235
8 295 251 289 236
16 334 283 338 237
32 423 343 431 243
64 578 426 584 247

(a) BOA (b) EP4DDL (c) CHRONICA

Figure 9: Difference in seconds between the estimated training

time and the actual training time over steps.

and degree of data imbalance. To evaluate the prediction ability

of the runtime prophet, we measured the difference between

the estimated training time and the actual training time for

each step. As shown in Figure 9, the differences between the

estimated and actual training time of CHRONICA are much

less than those of BOA and EP4DDL. Although EP4DDL

is unaware of data imbalance, it also showed a relatively

small difference between the estimated and actual training

time. However, EP4DDL consistently showed JCT similar to

TensorFlow because it only adjusts the number of CPU threads

even though our environment consists of multiple GPUs.

The degree of data imbalance of each system in the ho-

mogeneous cluster is shown in Figure 7. In order to verify

how well CHRONICA mitigates the data imbalance problem,

we measured the degree of data imbalance for each step. The

degree of data imbalance for each step was calculated as the

standard deviation of the size of mini-batch allocated to each

worker. It is obvious that the degree of data imbalance in

CHRONICA is definitely low compared to those of other sys-

tems. This result validates that CHRONICA effectively controls

the imbalanced data and provides a balanced training workload

for each worker. Although BOA did not consider the data

imbalance, it showed a relatively low degree of data imbalance.

Therefore, BOA produces a better JCT than EP4DDL.

Convergence. Figure 10 shows the convergence rates accord-
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(a) DIF = 0 (b) DIF = 16 (c) DIF = 32 (d) DIF = 64

Figure 10: Comparison of convergence over training time with different degrees of data imbalance.

(a) VGG16 (b) ResNet-50 (c) MobileNetV1 (d) EfficientNet-B0

Figure 11: Comparison of convergence over training time on four different workloads.

ing to the degree of data imbalance. For a fair evaluation,

we saved randomly initialized model parameters using Ten-

sorFlow’s model checkpoint function [38] and loaded the

checkpoint before the training of each system begins. This

ensures that all compared systems were trained under the

same conditions. As the degree of data imbalance grew, the

convergences of other systems were severely degraded while

CHRONICA consistently maintained a similar convergence

rate. This validates that CHRONICA not only reduces the

training time for each step, but also ensures the convergence

of the deep learning model.

C. Robustness against Workload

(a) Homogeneous (b) Heterogeneous

Figure 12: Comparison of JCT over workloads on homoge-

neous and heterogeneous clusters.

Table V: Comparison of training time per epoch over four

different workloads in a homogeneous cluster (in seconds).

Model
System

TensorFlow BOA EP4DDL CHRONICA

VGG16 628 440 630 249
ResNet-50 578 426 584 247
MobileNetV1 139 113 143 85
EfficientNet-B0 143 115 148 86

Makespan. Figure 12 and Table V show the normalized JCT

and average runtime for each training epoch by workload,

respectively. In order to evaluate the generality of our ap-

proach, we evaluated CHRONICA using four deep learning

models specified in Table III. When measuring the makespan,

we fixed DIF to 64 and used the average JCT over five different

executions for the indicator of makespan. Even if the workload

changes, CHRONICA consistently showed the fastest JCT. The

larger the increase in JCT in Section III, the greater the effect

of the acceleration of training. Especially for VGG16, which

showed the largest increase in JCT, the training time was

accelerated by 61%.

Convergence. The convergence rates for each workload are

shown in Figure 11. We evaluated the workload-robustness

of CHRONICA by measuring the convergence rate for each

workload. When evaluating the convergence rate against the

workload, DIF was fixed to 64 and the same techniques

described in Section VI-B were applied for a fair evaluation.

Although the degree of acceleration for convergence was

different depending on the workload, CHRONICA consistently

showed the fastest convergence for all workloads.

D. Effectiveness of Learning Rate Compensation

To validate the effectiveness of learning rate compensation

in CHRONICA, we compared the convergence rate of ResNet-

50 with and without learning rate compensation when DIF was

set to 64. As shown in Figure 13, in a homogeneous cluster,

data scheduler removes most of the degree of data imbalance

and thus the effect of learning rate compensation is negligible

(approximately 1%). On the other hand, in a heterogeneous

cluster, the convergence was additionally accelerated by 7%.

The degree of data imbalance in a heterogeneous cluster is

generally higher than that in a homogeneous cluster because
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the difference in performance between workers is larger.

This makes learning rate compensation more effective in a

heterogeneous cluster.

(a) Homogeneous (b) Heterogeneous

Figure 13: Comparison of convergence over the presence of

learning rate compensation.

E. Scalability

(a) Homogeneous (b) Heterogeneous

Figure 14: Comparison of scalability in homogeneous and

heterogeneous clusters.

Figure 14 shows the scalability of the systems for ResNet-

50, where we set DIF to 64 and increased the cluster size

from 1 to 32. The local batch size for each worker was set to

four and the global batch size was set to the product of the

number of workers and the local batch size, i.e., 4×cluster

size. As the cluster size grew, CHRONICA achieved better

scalability than all the other three systems. Especially when

the cluster size was set to 32, CHRONICA showed 3.19× faster

runtime than EP4DDL in the heterogeneous cluster. When

the synchronization latency increases due to straggler, the

scalability is significantly constrained. For example, if there

are two workers and four data samples where each of the

two workers contains two data samples with ETT of 1 second

and 100 seconds, then it takes 101 seconds to complete the

work. However, when these four data samples are distributed

to four workers, it takes 100 seconds to complete, and there

will be only 1.01× speedup compared to running with two

workers, indicating that it obtains very poor scalability. As a

result, systems with a lower degree of data imbalance achieved

better scalability.

F. Overhead

Table VI shows the breakdown of elapsed time in seconds

for running CHRONICA. To confirm whether the overhead

Table VI: Breakdown of elapsed time for running CHRONICA

on different cluster size (in seconds).

Operation
Number of Instances

8 32
Feedback 1.57 (0.60%) 0.48 (0.34%)
Schedule 0.06 (0.02%) 0.03 (0.02%)
Shuffle 0.02 (0.01%) 0.02 (0.02%)
Lock 6.23 (2.37%) 1.75 (1.25%)
Training 255.41 (97.01%) 137.73 (98.38%)
Total 263.28 (100%) 140.00 (100%)

of CHRONICA is reasonable, we measured the time taken

for each operation in CHRONICA on 8 and 32 instances

using MobileNetV1. In addition to feedback, scheduling, and

shuffling operations, there is a lock operation included in

CHRONICA that occurs while waiting for all workers to

complete training and access shared resources. As the size of

the cluster increases, the number of required steps within each

training epoch decreases linearly and the number of scheduling

procedures decreases. The execution of feedback operation is

parallelized and the complexities of scheduling and shuffling

algorithms are sublinear. Since these operations only transmit

a few bytes of data and most of the communication occurs

while transmitting the weight parameters and gradients, these

operations require an extremely small amount of time. As a

result, the overhead of CHRONICA accounts for less than 3%

of the total runtime on 8 and 32 instances.

VII. CONCLUSION

We explored the side effects of data imbalance on dis-

tributed training of deep learning model. The imbalanced data

significantly exacerbates the straggler problem and degrades

the convergence of deep learning model. In order to solve the

data imbalance problem, we proposed CHRONICA, a new data-

imbalance-aware scheduler. CHRONICA significantly mitigates

the straggler problem and convergence degradation given the

imbalanced data. Our extensive evaluation over 32 Amazon

EC2 GPU instances showed that CHRONICA accelerates train-

ing at most 3.19 times faster than the state-of-the-art systems

with better scalability while ensuring the convergence of deep

learning model.
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